O příspěvku

Tématické zařazení

Klíčová slova

Použití

  • Mimo třídu

Pomůcky

  • Bez pomůcek
PDF ke stažení

Co vše se skrývá pod slapovými jevy?

Franc T.

Abstrakt

Většina studentů si pod slapovými jevy představí pouze příliv a odliv. Slapové jevy jsou však mnohem rozsáhlejší téma zahrnující mnoho efektů způsobených působením slapových sil. V příspěvku je uveden přehled slapových jevů, se kterými se lze setkat ve sluneční soustavě. Všechny jevy jsou nesmírně zajímavé, takže mohou pomoci ke zvýšení motivace studentů ke studiu fyziky.

Úvod

Cílem příspěvku je uvést výčet slapových jevů, se kterými se lze setkat ve sluneční soustavě. Všechny jevy jsou velice zajímavé, takže mohou vzbudit zájem o další studium fyziky. Na podrobné vysvětlení těchto jevů v tomto článku není prostor, všechny jevy však lze vysvětlit pouze s použitím středoškolské fyziky. Postupně uvedeme tyto slapové jevy: příliv a odliv, vázaná rotace, vývoj soustavy Země-Měsíc (s ohledem na působení slapových sil), slapové urychlování a zpomalování měsíců planet a slapový ohřev. Zmíněný výčet slapových jevů však rozhodně není úplný, další jevy ovšem přesahují rozsah tohoto článku.

Příliv a odliv

Gravitační síla, kterou působí Měsíc na Zemi, podle Newtonova gravitačního zákona s rostoucí vzdáleností od Měsíce klesá, takže různé části Země jsou k Měsíci přitahovány různě velkou gravitační silou. Měsíc dále působí na Zemi jako na celek, a když uděláme rozdíly gravitačních sil v jednotlivých částech Země a té celkové, dostaneme výsledné slapové síly. Důležitým předpokladem pro výpočet rozdílů gravitačních sil je, že se Země nachází v beztížném stavu, neboť obíhá kolem barycentra (společného hmotného středu soustavy Země-Měsíc). Výsledkem potom je, že slapové síly směřují od středu Země hned na dvou místech, takže příliv se nachází na dvou místech současně a stejně tak odliv se nachází na dvou místech současně (kde slapové síly míří do středu Země), viz Obrázek 1. Perioda střídání přílivu na daném místě na Zemi nicméně není 12 h, ale trvá to o něco déle, musíme totiž vzít v úvahu nejen rotaci Země kolem osy, ale i oběh Měsíce kolem Země (resp. barycentra), takže teoreticky[1] by se měl příliv na daném místě na Zemi střídat každých 12 h 25 min. Pro snazší pochopení tohoto jevu jsme vytvořili jednoduchou animaci, viz [1], kde lze nalézt také animaci slapových sil Měsíce a Slunce. Pro další detaily výpočtu slapových sil Měsíce a Slunce, např. i s ohledem na excentricitu pohybů Země a Měsíce, viz [2].

Obrázek - Franc T.: Co vše se skrývá pod slapovými jevy?

Obrázek 1. - Slapové síly, kterými Měsíc působí na jednotlivé části Země. Měsíc se nachází na přímce AC (a je jedno, jestli blíže bodu A nebo C). Příliv se nachází v těch místech, kde slapové síly míří od středu Země, tedy v bodech A a C a odliv se nachází v těch místech, kde slapové síly míří do středu Země, tedy v bodech B a D.

Vázaná rotace

Měsíc má se Zemí tzv. vázanou (též synchronní) rotaci. Znamená to, že ze Země můžeme vidět pouze jednu část povrchu Měsíce a zbytek je pro nás navždy skrytý (přivrácená a odvrácená strana Měsíce). Je to způsobeno stejnou hodnotou periody rotace Měsíce kolem jeho osy a periody oběhu Měsíce kolem barycentra. S tím mají studenti obvykle problém, neboť si vázanou rotaci vysvětlují často tím, že Měsíc kolem osy nerotuje. Proto jsme vytvořili další animaci demonstrující vázanou rotaci, opět viz [1]. Studenty by však mohlo napadnout, že jde o pouhou náhodu v případě unikátní dvojice Země-Měsíc. Z omylu je vyvedeme snadno – vázanou rotaci mají oba měsíce Marsu Phobos a Deimos, 7 měsíců Jupiteru včetně všech čtyř velkých Galileových měsíců, dále 9 měsíců Saturnu včetně největšího Titanu, 5 měsíců Uranu a Neptunův největší měsíc Triton. A to je výčet potvrzených měsíců, u dalších musíme počkat na přesná měření (především rotačních period kolem os). O náhodě tedy nemůže být řeč. Vázanou rotaci způsobují slapové síly planet (resp. gravitační síly, ale slapové síly hrají v tomto jevu podstatnou roli, viz popisek u Obrázku 2). Záleží, jestli měsíc kolem planety obíhá rychleji nebo pomaleji v porovnání s rychlostí rotace kolem osy (a také na tom, jestli měsíc rotuje prográdně nebo retrográdně, tedy ve směru nebo proti směru oběhu kolem planety). V Obrázku 2 uvádíme vysvětlení pro jeden z těchto případů. Popis obrázku je na následující straně.

Obrázek - Franc T.: Co vše se skrývá pod slapovými jevy?

Obrázek 2. - Vysvětlení původu vázané rotace měsíce. Slapové síly planety způsobují vznik dvou výdutí na měsíci. Protože však měsíc rotuje kolem vlastní osy jinou úhlovou rychlostí, než s jakou obíhá kolem planety, dochází vlivem tření mezi výdutěmi a měsícem k odchýlení výdutí ze spojnice středů planety a měsíce. Na obrázku je znázorněn případ, kdy měsíc rotuje prográdně a perioda rotace kolem jeho osy je menší než perioda jeho oběhu kolem planety (červenou šipkou je naznačen směr rotace měsíce a černou přerušovanou šipkou směr oběhu měsíce kolem planety). Výduť, která je blíže k planetě, se proto mírně opožďuje za spojnicí středů planety a měsíce. Gravitační síly, kterými působí planeta na obě výdutě, jsou vyznačeny zeleně. Gravitační síla planety působící na bližší výduť je větší než gravitační síla působící na vzdálenější výduť a navíc obě síly mají různý směr (míří však do středu planety). Obě síly tak působí na měsíc výsledným nenulovým momentem sil, který má opačnou orientaci, než vektor úhlové rychlosti rotace měsíce kolem osy. Tento moment proto rotaci měsíce zpomaluje, čímž se rychlost rotace kolem osy přibližuje rychlosti oběhu kolem planety do té doby, než se obě rychlosti vyrovnají.

Vývoj soustavy Země-Měsíc

Stejně jako je na Obrázku 2 znázorněna situace pro výdutě na měsíci planety, mohli bychom takový obrázek nakreslit pro výdutě na Zemi způsobené Měsícem. Protože Země rotuje kolem osy rychleji, než obíhá kolem barycentra, dochází ke tření mezi výdutěmi a planetou, což vede k natočení výdutí ve směru rotace Země a tedy ke zpomalování rotace Země. A s tím přímo souvisí další efekt, a to že se Měsíc od Země vzdaluje (na vysvětlení opět stačí rozbor sil). Vzdálenost Měsíce se samozřejmě mění, protože obíhá po elipse, nárůstem vzdálenosti však myslíme nárůst střední vzdálenosti Měsíce od Země (délky hlavní poloosy). A jaké jsou naměřené hodnoty? Doba rotace Země se zpomaluje přibližně o 2 ms za století a Měsíc se vzdaluje zhruba o 4 cm za rok. Tento jev samozřejmě není lineární, ale kdybychom to předpokládali, tak dostaneme, že den na Zemi bude trvat 25 hodin za 180 miliónů let (ve skutečnosti to bude trvat déle).

Konečný stav vývoje systému Země-Měsíc

Jestliže se rotace Země zpomaluje a Měsíc vzdaluje, jaký bude konečný stav? Unikne Měsíc z gravitačního působení Země a stane se oběžnicí Slunce? Tato situace nenastane, konečná vzdálenost Země a Měsíce bude přibližně 554 000 km, což je v oblasti, kde převládá gravitace Země nad gravitací Slunce. A rotace Země se zpomalí natolik, že den na Zemi bude trvat přibližně 47 dní. V tomto stavu bude platit, že perioda rotace Měsíce kolem osy bude stejná jako perioda jeho oběhu kolem Země (to platí již dnes) a navíc to bude stejná hodnota, jako právě uvedená perioda rotace Země kolem osy, tedy všechny tyto tři hodnoty budou činit 47 dní. Takže ze Země bude stále vidět jen jednu „stranu“ Měsíce, ale navíc z Měsíce bude viditelná stále stejná „strana“ Země. Kdy k tomu dojde? Dolní odhad činí 4 miliardy let, což je zhruba stejný odhad, kdy Slunci dojde vodík, takže ve skutečnosti nejspíše k tomuto výslednému stavu Země s Měsícem nedospějí.

Slapové urychlování a zpomalování měsíců planet

Jevu, kdy se měsíc od planety působením slapových sil vzdaluje, říkáme slapové urychlování. A netýká se jen Měsíce, ale většiny ostatních měsíců sluneční soustavy. Vliv působení slapových sil na vzdálenost měsíce od planety může být buď právě zmíněné slapové urychlování a tedy vzdalování měsíce od planety nebo také i slapové zpomalování, kdy se měsíc k planetě naopak přibližuje. Pokud měsíc obíhá planetu prográdně a perioda rotace planety kolem osy je menší než perioda oběhu měsíce kolem planety (případ Měsíce), pak nastává slapové urychlování. Pokud měsíc obíhá planetu prográdně a perioda rotace planety kolem osy je větší než perioda oběhu měsíce kolem planety (měsíc tedy obíhá planetu pod stacionární dráhou), pak nastává slapové zpomalování. Jde o případu Marsova měsíce Phobos, který se přibližuje k Marsu rychlostí zhruba 20 cm za rok. Dále jde o dva Jupiterovy měsíce, 11 měsíců Uranu a 5 měsíců Neptunu. Poslední případ pak nastává v případě retrográdního pohybu měsíce kolem planety (a na vztahu periody rotace planety a periody oběhu měsíce nezáleží), kdy dochází opět ke slapovému zpomalování. To se týká 52 měsíců Jupiteru (z nichž většina je poměrně nedávno zachycených malých asteroidů), 29 měsíců Saturnu, 8 měsíců Uranu a 4 měsíců Neptunu, ze všech těchto příkladů je nejzajímavější Triton, což je velký měsíc oproti všem ostatním měsícům ve sluneční soustavě s retrográdním pohybem.

Slapový ohřev

Měsíce jsou deformovány slapovými silami. Pokud by nějaký měsíc obíhal kolem planety po kružnici, byly by slapové síly stále stejně velké a tedy deformace měsíce stále stejná. Měsíce však obíhají po eliptických trajektoriích, takže jsou velikosti slapových sil proměnné, čímž tedy dochází k proměnnému natahování a smršťování měsíců. Výsledkem je, že se nitro měsíců ohřívá a záleží na velikostech slapových sil, jak moc jsou proměnné, a na vnitřní struktuře samotného měsíce.

Vulkanismus

Nejznámějším případem slapového ohřevu je Jupiterův měsíc Io. Již několik vesmírných sond pozorovalo na jeho povrchu erupce. Jde dokonce o vulkanicky nejaktivnější těleso ve sluneční soustavě, neboť na jeho povrchu se nachází více než 400 sopek (je tedy aktivnější než Země, kde je ovšem původ sopek jiného než slapového původu).

Kryovulkanismus

Pokud se jedná o měsíc tvořený především zmrzlým materiálem, pak může být tento materiál částečně „roztaven“ a na povrchu měsíce můžeme pozorovat opět sopky, ovšem tentokrát nikoli s horkým materiálem, nýbrž se zmrzlými částicemi. Kryovulkanická činnost již byla potvrzena na Saturnových měsících Enceladus a Triton. Na dalších měsících se předpokládá: Europa a Ganymede (Jupiter), Dione a Titan (Saturn), Miranda a Ariel (Uran).

Podpovrchový oceán

Pokud jde o slapový ohřev, tak pokud vnitřní struktura měsíce obsahuje led, pak může led při vhodných podmínkách roztát a vytvořit podpovrchový oceán obsahující vodu v tekutém stavu. Na několika měsících se tento jev předpokládá (Jupiterovy měsíce Europa, Ganymede a Callisto), na dvou už byl dokonce potvrzen. Na Saturnově Titanu byl potvrzen nepřímo sondou Cassini, která zjistila, že změny v deformaci tohoto měsíce dosahují až 10 metrů, což by nebylo možné, kdyby nitro neobsahovalo právě kapalnou vrstvu. A na Saturnově Enceladu byl podpovrchový oceán prokázán přímo, když sonda Cassini prolétla jedním gejzírem z kryovulkánu a zjistila, že vyvržený materiál obsahuje kapičky vody – a dokonce se stejným obsahem soli, jaký mají oceány na Zemi. Díky slapovým silám tak může na takových měsících existovat život.

Závěr

V článku jsme uvedli tyto příklady slapových jevů: příliv a odliv, vázanou rotaci, vývoj systému Země-Měsíc a konečný stav tohoto vývoje, slapové urychlování a zpomalování (což znamená změnu ve vzdálenosti mezi planetou a měsícem) a slapový ohřev nitra některých měsíců, který způsobuje vulkanickou a kryovulkanickou činnost a dále umožňuje existenci podpovrchových oceánů, což již bylo potvrzeno na dvou měsících. Vše je možné vysvětlit na úrovni střední školy. Téma slapových jevů, které vede až k možnosti vzniku mimozemského života, je pro studenty nesmírně zajímavé a představuje tedy užitečnou „pomůcku“ pro učitele, jak zvýšit zájem studentů o fyziku.

Poděkování

Tento příspěvek vznikl za podpory Grantové agentury Univerzity Karlovy (číslo smlouvy 341311) a za podpory Studentského výzkumu v oblasti didaktiky fyziky a matematického a počítačového modelování (projekt číslo 267310).

Literatura

[1] http://sirrah.troja.mff.cuni.cz/~franc/

[2] Franc T.: Tides in the Earth-Moon System. In WDS'12 Proceedings of Contributed Papers: Part III - Physics: Pavlů J., Šafránková J. Matfyzpress, Praha, 2012, s. 98-104.

[3] Brož M.: Fyzika malých těles sluneční soustavy. V přípravě pro knižní vydání.


[1] Slovo teoreticky jsme použili z toho důvodu, že ve skutečnosti je situace složitější. Kdyby byl povrch Země pokrytý pouze vodou, byla by hodnota 12 h 25 min platná, na pohyby vody však mají podstatný vliv pevniny a profil mořského dna a navíc na příliv a odliv má nezanedbatelný vliv také Slunce.