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Abstract 

The paper describes two experiments concerning free fall of systems combining elastic and 
inertial mass. The described experiments represent two extreme situations: 1) elastic mass 
is negligible, 2) all the falling mass is elastic. Both experiments are very impressive and can 
be at certain level analysed using upper secondary school physics. The theoretical 
arguments are complemented by analysis of video recordings obtained using high-speed 
camera. 

 

Introduction 

The topic of the “falling spring” seems very trivial. Yet an experiment can be arranged in 
such a way, that it is not only very appealing, but it can also be very well described using 
merely secondary school physics-level. This paper explores two variants of these 
experiments. The first one, which is physically easier, contains two falling object vertically 
connected by a spring of negligible mass. In the second variant all of the falling mass is part 
of the spring – the fall of a freely hanging toy – the so-called “slinky”. The results of the 
latter experiment are very surprising and can be interestingly commented on using basic 
laws of physics, despite the complexity of its theoretical description. 

 

Two objects connected by a spring 

In this experiment, we let two bodies of equal mass connected by a spring fall freely from 
an initial position where one body is held in the hand and the other is hanging freely on the 
spring, see figure 1(a). The motion itself is very fast, so a high-speed camera is necessary 
for observation or measurement. The very beginning of the fall can be quite surprising - the 
lower body practically does not fall at all for a relatively long time - yet this can be explained 
by a very simple reasoning (see [1] as well). 

The force analysis is shown in figure 1(b). The gravitational forces acting on both bodies are 
vertically downward (red arrows). Considering the equal mass of the bodies, the 
magnitudes of the forces are identical. Before the fall commences, both bodies are 
stationary, thus the resulting forces applied to each individual body must be equal to zero. 
Consequently, the magnitude of the spring tensile force acting on the lower body must be 
the same as the gravitational force, and according to the law of action and reaction, the 
same magnitude of the tensile force acts on the upper body, only in the opposite direction 
(blue arrows). To achieve force equilibrium on the upper body, a pull is required from the 
suspension (hand), which is not plotted in figure 1(b), so the figure shows the state 
immediately after the suspension is released. 
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 (a) (b) 

Fig. 1. Two bodies connected by a massless spring (a) and force analysis (b). 

The force analysis immediately gives that the resultant force at the moment after the 
suspension is released is zero on the lower body, so the body does not accelerate at all. On 
the contrary, the upper body is subjected to twice the force of gravity and therefore "falls" 
with an acceleration of 2g. 

The next stages of this experiment can be described theoretically using only upper 
secondary school physics and mathematics. 

Let us first solve the problem in a centre-of-mass reference frame and let us align the 
system horizontally for easier visualization, see figure 2. In the centre-of-mass frame, the 
centre of mass cannot move, so the motions of the two bodies relative to the centre of 
mass must be symmetrical. This also means that the situation does not change if we firmly 
fix the centre of mass to a point in space, see figure 3. In that case, we can solve the left 
and right symmetric parts separately and obtain a pretty standard upper secondary school 
problem of oscillations of a body on a fixed spring, see figure 4. However, it needs to be 
considered that a spring of half the length has twice the stiffness. 

 

k m m 

 

Fig. 2. Two bodies connected via a spring in a centre-of-mass reference frame. 

 

2k m m 2k 

 

Fig. 3. Two bodies connected via a spring in a centre-of-mass reference frame, the 
position of the centre of mass is fixed. 



Z. Bochníček: Falling spring 

 

 3 

 

m 2k 

 

Fig. 4. A body on a spring, a standard secondary school task. 

Due to the initial conditions 
(1) 

(2) 

the solution of the following form is obtained: 
(3) 

for 

(4) 

 

It needs to be noted, that for this experiment the solution can only be used for short times 
compared to the theoretical oscillation period. 

Now let us apply the solution easily obtained in the centre-of-mass frame to the original 
problem. The static spring extension determines the amplitude of the displacement 

 

(5) 

 

and the transition from the centre-of-mass frame to the laboratory frame is performed by 
adding the free fall with acceleration g to the time evolution of the position. We get: 

 

(6) 

 

(7) 

The coordinates x1 and x2 determine the position of both bodies relative to the equilibrium 
position in which the spring connecting the two bodies would be unstressed. The negative 
sign of the position of the upper body is given by the choice of the orientation of the x-axis, 
see figure 1(a). 

Short-time approximations 

The previously stated solution can be complemented by an illustration of approximation 
methods, which are used very often in physics. 

Let us approximate above mentioned solution for short times, i.e. for times much shorter 
than is the period of the oscillations 

 𝜔 𝑡 ≪ 1. (8) 
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Hence, the cosine function can be approximated as 

 cos 𝜔𝑡 ≅ 1 −
1

2
(𝜔𝑡)2. (9) 

In this approximation equations (6) and (7) can be written as 

 

(10) 

 

(11) 

 

So, the calculation in the small-time approximation showed that at the beginning of the fall 
the upper body is indeed falling with an acceleration of 2g, while the lower body is not 
accelerating at all. The same conclusion was drawn from the initial simple force analysis, 
but the approximate calculation gave information not only about the initial moment but 
also about the time dependence in the initial part of the fall. 

Experimental verification 

Experimental verification was carried out with a steel spring of mass mp = 0.1 kg, stiffness 
k = 7.7 N/m and with two one-kilogram weights. Thus, the mass of the spring was 
approximately equal to 5 % of the mass of the whole system and it was therefore possible 
to apply the above-described model with a massless spring. The system was suspended on 
a thin thread and was released by burning the thread. In addition, a thicker string was 
attached to the upper body, which was used by the experimenter to catch the falling body 
after some time, so the spring would not be damaged by the impact of the heavy body. 

The fall was recorded by a high-speed camera with a frame rate of 1000 Hz. The video was 
processed using Capstone. 

  

Fig. 5. Time dependency (horizontal axis) of the position (vertical axis) during the fall of 
two bodies. 
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The result is shown in figure 5. The initial positions of both bodies are placed to the origin 
of the coordinate system. For the upper body, the experimental data are in very good 
agreement with the theoretical calculation according to equation (6). The experimental 
data for the lower body are slightly delayed compared to the theory (equation (7)). This 
effect is due to the finite wave propagation speed in the spring and will be further discussed 
later. 

The green curve shows the free fall of the body with a 2g acceleration. We can see that in 
the first 0.15 s or so of the fall the upper body is truly falling with an acceleration of 2g, but 
in the latter stages of the fall the acceleration starts to noticeably decrease. 

 

„Slinky“ 

Slinky is a spring with a larger number of turns and very small stiffness, so that it sags 
significantly under its own weight when hanging freely, see figure 6. Slinky is commonly 
sold as a toy that exhibits interesting effects, see for example [2]. 

 

Fig. 6. Slinky. 

The free fall of a vertically hanging slinky is a very interesting and surprising phenomenon 
that begs for a theoretical description. It can be said that the problem is currently 
theoretically solved [3]. The analytical solution is well beyond the level of secondary school 
physics; nonetheless, interesting conclusions can be drawn using the basic laws of 
mechanics even in secondary school. 

The video is accessible, for example, at [ 4]. Similar videos can easily be found on YouTube 
by inputting the keyword "Falling slinky". 

Two facts about the fall are particularly surprising. 

1) The spring contracts in such way that the upper coils gradually overlap, and this 
growing bundle travels the entire length of the stationary spring. 

2) Throughout the contraction of the spring, the lower end of the spring remains 
motionless. 

Both effects can be explained by the remarkable property of the longitudinal wave 
propagation speed in the spring. From the theoretical analysis stems that the longitudinal 
wave propagates at the speed at which the wave travels through the same mass of the 
spring in the same time period. If we define the so-called "mass velocity" (with the unit 
kg/s), then the following applies [5] 

 𝑣𝑚 = √𝑘 ∙ 𝑚𝑝 = konst, (12) 



Physics Teachers' Inventions Fair 25 

 6 

 

where mp je the mass of the whole spring. The constancy of the "mass velocity" means that 
the time of flight of the wave from one turn to another is constant and independent of the 
instantaneous extension of the spring. During static sag, the density of the turns increases 
downwards, so a wave with a constant mass velocity slows down as it passes through the 
spring, causing compression of the falling turns. The part of the spring below the 
compressed bundle has not yet received the information that the upper end of the spring 
has been released, so the spring remains in its pre-release state. Thus, the lower end of the 
spring remains motionless throughout the wave passage through the spring. 

Weighted spring 

Immobility of the lower end of the spring throughout the contraction of the spring is a very 
surprising phenomenon. What would happen if we were to load the lower end with some 
additional weight? At first glance, it would seem that the gravitational force on this weight 
would cause the lower end of the spring to accelerate. However, it can be very easily 
reasoned that even in this case the lower end of the spring will remain stationary until the 
compressed pack of turns reaches it. Let us consider an arbitrary turn in the middle part of 
the spring. When the spring hangs freely, this coil is deformed by the gravitational force of 
the mass under the turn. It does not matter whether the mass below consists of the other 
turns of the spring or of the added weight. Consequently, the longitudinal wave has no 
information about the distribution of the mass in the lower part of the spring and its 
contraction proceeds in the same way. 

An intriguing consequence of the constancy of the mass velocity is the fact that regardless 
of the static extension of the spring, i.e. regardless of the mass of the weight suspended 
under the spring, the flight time through the entire length of the spring is always the same. 
The time of flight over the entire length of the spring is calculated as (analogy of the relation 
t = s/v) 

 𝑡𝑝 =
𝑚𝑝

√𝑘∙𝑚𝑝
= √

𝑚𝑝

𝑘
 (13) 

and this time depends exclusively on the stiffness of the spring and its total weight and 
does not depend on the current spring extension. 

The equation (12) and the consequent (13) cannot be deduced in the secondary school 
physics framework and must be stated as a fact. However, it can be very easily 
experimentally verified. Fasten the lower end of the spring to the ground via an electronic 
force gauge. Fasten another force gauge to the upper end and stretch the spring vertically 
by hand. Generate a longitudinal wave that propagates downwards through the spring by 
swinging the arm vertically. Longitudinal wave oscillations are registered by both force 
gauges and from the signal delay in the lower force gauge the propagation time of the wave 
along the entire length of the spring can be determined. Repeat the experiment for 
different static spring tensions. An example of such measurement is shown in figure 7. For 
the measurements, the steel spring from the first experiment was used, which was 
successively stretched with a force of 5 N (upper pair of curves) and a force of 10 N (lower 
pair). In both cases, the pulse delay at the lower end of the spring (red curve) compared to 
the upper end of the spring (black curve) is identical within the experimental errors. Thus, 
the travel time of the wave along the spring indeed does not depend on its tension. 
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Substituting the parameters of the used spring mp = 0.1 kg, stiffness k = 7.7 N/m, yields 

 𝑡𝑝 = √
𝑚p

𝑘
= √

0.1

7.7
= 0.114 s, (14) 

which is in good agreement with the measured values. 

 

Fig. 7. Propagation of longitudinal waves in a slinky spring. (Horizontal axis – time; vertical 
axis – force; black curve – upper force gauge; red curve – lower force gauge.) 

 

Fig. 8. Time dependency of the position of the upper end of the slinky. (Horizontal axis – 
time; vertical axis – position; black dots – a free slinky; red dots – a loaded slinky; blue line 

–a linear fit.) 

Experiment 

The fall of the slinky with different suspended weights was captured with a high-speed 
camera at 1000 Hz and assessed in Capstone. The results for two different spring loads are 
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shown in figure 8. It can be seen that the upper end of the spring – the contracted bundle 
of turns – falls at a nearly constant rate in both cases (except for a brief moment 
immediately after the top body is released). A detailed comparison with linear fit even 
shows that the speed decreases during the fall. This can be explained qualitatively by the 
moving bundle successively impacting the lower turns causing them to accelerate, and this 
slows down its motion compared to the expected accelerating fall. 

The contraction time of a differently loaded spring is not constant, as it should follow from 
equation (13). The spring with a higher load falls with higher speed but for a longer time 
than the spring with a lower load. This effect is probably due to air resistance, which is 
more significant for the faster falling spring. 

Spring contraction and fall of the centre of mass 

Provided that an arbitrary system of bodies falls freely in a homogeneous gravitational 
field, the centre of mass (centre of gravity) must move in a uniformly accelerated motion 
with acceleration g. However, the substantial part of the spring remains at rest for most of 
the contraction and the upper end falls at an approximately constant speed. Although this 
does not contradict the necessity of a free fall of the centre of gravity, the density of the 
turns increases along the downward direction and the mass of the approximately uniformly 
falling contracting bundle increases with increasing velocity, providing the desired 
uniformly accelerated fall of the centre of gravity. 

Spring contraction and initial position of the centre of gravity 

A very interesting conclusion stems from the fact that the contraction time of a spring does 
not depend on its deformation. Suppose that the contracted spring is much shorter than 
its initial length before relaxation, and thus we can neglect its contracted length. Let us 

Fig. 9. Position of the centre of the gravity of freely suspended and loaded spring. 
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further assume that the vertical size of the added weight is also negligible relative to the 
initial length of the stretched spring. Under these simplifying assumptions, the entire spring 
(including any additional weight) contracts to a point at the lower end of the spring 
Simultaneously, the contraction time must be equal to the free fall time of the centre of 
gravity of the system. Due to the fact that the contraction time does not depend on the 
static sag, i.e. on the weight of the added weight, the centre of gravity of the system spring 
+ weight must be in the same distance from the lower end of the spring, regardless of the 
weight of the extension, see figure 9.  

Torsional wave 

When closely observing the slow-motion recording of the falling spring, it can be noticed 
that the spring is not completely stationary under the falling bundle of turns, rather a 
torsional wave is propagating in the spring, which is related to the fact that the torsional 
rotation of the spring occurs at the same time as the spring is being stretched. This 
phenomenon can be easily demonstrated by a simple experiment: a load of a reasonable 
weight is suspended from a spring and placed on a mat at the beginning of the experiment. 
We mark a certain position on the circumference of the weight beforehand, so that we can 
observe the rotation well. We fully relax the spring. Then gradually lift the upper end of the 
spring until the suspended body rises above the mat. During the lifting, the weight visibly 
rotates, showing that the longitudinal stretching of the spring is accompanied by a torsional 
deformation. 

A soft spring - the slinky - is stiffer against torsional rotation than against longitudinal 
extension, so the speed of propagation of the torsional deformation is higher than the 
speed of propagation of the longitudinal wave. However, the torsional wave does not cause 
vertical movement of the lower end of the spring, which remains stationary throughout the 
spring contraction. 

 

Conclusion 

The fall of the spring is an interesting and appealing problem. In the first variant - the elastic 
mass is negligible compared to the inelastic mass - the problem can be solved theoretically 
even within the framework of upper secondary school physics. The second variant - the 
falling slinky - is too difficult theoretically for upper secondary, yet this very attractive and 
surprising experiment can be commented on using the basic laws of mechanics. It can also 
be used as an illustration of the finite speed of propagation of a force interaction, or as an 
analogy for the tsunami phenomenon in which the phase velocity of a wave near the coast 
decreases, causing a catastrophic increase in amplitude. Similar to the fall of the slinky, the 
mass of contracted turns increases rapidly for the same reason. 

Finally, the attractiveness and richness of the physical content of these experiments can be 
used as a subject for student projects. 
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