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Abstract 

Currently, there is no problem to get quite cheap capacitors with the capacitance greater 

than 1 F. These components even without special measuring systems allow to carry out 

a lot of interesting experimental tasks, which bear relation to transient response and 

might help pupils to understand better this relatively difficult part of physics. The main 

aim of this paper is to theoretically and experimentally analyse the so-called paradox of 

two capacitors that refers to the apparent breaking of the energy conservation law during 

the transient response, when a capacitor is connected to another capacitor of the same 

capacitance. The paper also presents ideas for laboratory works which are executable in 

the teaching of electricity at upper secondary schools.  

 

Introduction 

The capacitor is one of the basic electrical components, and in the physics education at 

the upper secondary school a main focus is given to it at the end of the topic of 

electrostatics. This component is even the matter of some laboratory works carried out 

at schools, moreover the textbook of electricity and magnetism for general secondary 

schools describes the measurement of the capacitance of a capacitor by the help of 

alternating electric current, and websites of some schools (e.g. Jirásek general secondary 

school in Náchod - http://fyzika.gymnachod.cz/) offer manuals for the determination of 

capacitance from the discharge curve with the use of the Vernier system.  

The Vernier system is needed mostly because the capacitance of normally available 

capacitors in schools is quite low (millifarads at most) and, as a consequence of that, the 

transient response lasts a very short period of time during charging and discharging the 

capacitor (the duration of the transient response is directly proportional to the capacitor 

capacitance C and to the resistance of the connected resistor R). This has certain 

disadvantages, lets mention two of them. For example, it’s not possible to sensibly carry 

out an experiment with a light bulb connected to charging circuit of a capacitor and show 

to the pupils how the light bulb glows at the beginning of the discharge and that the glow 

gradually decreases as the source voltage approaches the capacitor voltage. Likewise, it 

is impossible to illustratively demonstrate the dependence of the transient response 

duration on the magnitude of the resistor resistance. These factors can have a negative 

influence on the pupils’ grasp as they don’t have the possibility of first-hand contact 

with the functioning of the capacitors. Actually, nowadays relatively simple and cheap 

solution exists – the use of so-called supercapacitors which have a very high 

capacitance.  
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Supercapacitors and Their Characteristics  

It’s generally well-known that the capacitance of a parallel-plate capacitor is directly 

proportional to the plate areas and to the dielectric constant (relative permittivity) of a 

dielectric filled inside, and is indirectly proportional to the distance of the plates. What 

are the options if we want to significantly increase the capacitance of the component? A 

dielectric of higher quality won’t have a greater impact, because it’s very difficult to 

find a material with a dielectric constant greater than 10 (e.g. hafnium oxide whose 

preparation in the form of a thin layer is quite demanding). Therefore, it remains to 

extensively enlarge the plates’ area or shorten the distance between them. However, the 

enlargement of the plate area mustn’t go against the effort to miniaturize the relevant 

components. This brings us to the world of nanotechnology, where in recent years there 

has been such a significant development that capacitors with a corresponding plates 

distance in the order of tenths of a nanometre are already commonly manufactured (it is 

actually a bilayer thickness at the electrode-electrolyte interface in which energy is 

concentrated –  Supercapacitor on Wikipedia) and a specific electrode area of up to  

3 000 square meters per gram. Thanks to this, it is possible to obtain supercapacitors 

with a capacity of thousands of farads. 

Carbon nanotubes, for example, appear to be a promising material for electrodes, and 

graphene is also often used. However, there is a considerable amount of production 

technologies and usable materials. This issue is summarized in detail, for example, in a 

study [1]. The price of supercapacitors, which are available in e-shops, usually 

significantly increases with the capacitance. While a 1.5 F capacitor can be purchased 

for less than CZK 100, a capacitance of 7.5 F will cost more than CZK 200, a 500 F 

capacitor will cost approximately CZK 800, and an electrolytic supercapacitor with a 

capacity of 3 000 F will cost more than CZK 3 000.  

As the capacitance of supercapacitors increases, the maximum allowable voltage U 

decreases which is essential for the maximum energy that the capacitor can store.  The 

reason is simple – the increase of a capacitance is achieved by a significant shortening 

of the distance between the electrodes d, which in consideration of the relationship for 

the intensity of the electric field E inside the plate shaped capacitor 𝐸 =  
𝑈

𝑑
 leads to very 

high intensity even at low voltage. Therefore, there is a risk of dielectric breakdown and 

destruction of the capacitor. In the case of components with a capacitance in the order 

of hundreds or thousands of farads, the maximum allowable voltage is usually only 

about 3 V. Energy 𝐸0, which can be stored in a capacitor, is still huge, for example, if 

we have the capacitance C = 3 000 F and the voltage U = 2.7 V, we get the energy  

𝐸0 =  
1

2
∙ 𝐶 ∙ 𝑈 = 10 935 J. It’s not then surprising, that supercapacitors are used mainly 

in applications where it is necessary to store a large amount of energy. The importance 

of these components for electro-mobility is often discussed, where they could replace 

batteries (the advantage of capacitors is fast charging, but low energy density is 

problematic). More information about applications can be found, for example, in [2]. 
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The Use of Supercapacitors in Teaching  

The fundamental question is how to didactically transform this dynamically developing 

field into school physics. It is of course possible to mention supercapacitors as an 

interesting alternative to batteries and focus on their applications, including a discussion 

of advantages and disadvantages. To compute exercises inspired by the real 

characteristics of these components may also be interesting. Special attention should be 

paid to understanding why large capacitance leads to very small maximum voltages so 

that pupils realize why capacitors have a voltage indication next to its capacitance (for 

example, it is possible to calculate the intensity of the electric field for given values and 

compare it with the dielectric strength of different materials, etc.). 

In our opinion, the most appropriate is to use these components to directly demonstrate 

the characteristics of capacitors and for the experimental work of pupils. For this 

purpose, it is absolutely unnecessary to spend large sums of money on supercapacitors 

with extremely large capacitance, values of capacitance in the order of farad units are 

sufficient, where the price is far from large and there is therefore a better chance to order 

more pieces. In the next section, we will present a few ideas for specific activities in this 

area.  

Charge and discharge curve of a capacitor  

With a supercapacitor and a potentiometer (or a resistance decade), it is easy to 

demonstrate how the charging speed depends on the resistance in the circuit. Connect a 

voltmeter to the capacitor that is being charged and observe an increasing voltage on the 

capacitor. If we increase the resistance abruptly, the charging speed will significantly 

slow down. With an appropriate choice of the resistance, the transient response will be 

so slow that pupils can note down values of the voltage after certain time steps and then 

process obtained data in Excel and find out to what extent they are in accordance with 

the exponential course of the voltage. It is also possible to connect a light bulb into the 

charging circuit and observe how the glow gradually decreases as the capacitor voltage 

increases. It is possible to proceed similarly when the capacitor discharges, where it is 

interesting to observe that the capacitor slowly discharges itself after disconnecting the 

source, even without connecting a resistor. This happens due to the so-called leakage 

current that passes through the capacitor plates, because the dielectric is not a perfect 

insulator. The magnitude of this leakage current (and therefore the speed of  

self-discharge) is an important characteristic of the quality of the component. This effect 

is noticeable with commonly available supercapacitors, but it is not so strong that its 

speed could compete with the discharge through the resistor. 

Paradox of two capacitors 

This is a very interesting problem when a discharged capacitor is connected to an identic 

capacitor with capacity C charged to voltage U by charge Q. As a consequence of the 

fact that the voltages on both capacitors approach the same value and due to the charge 

preservation law and the well-known formula 𝑄 = 𝐶 ∙ 𝑈, the charge 
𝑄

2
 and the voltage 

𝑈

2
 

will be the same on both capacitors. Before connecting of an uncharged capacitor into 
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the circuit, the energy of electric field was defined by the formula  

𝐸𝐴 =
𝑄2

2∙𝐶
 . After connecting the capacitor into the circuit, the sum of energies of the 

electric fields in both capacitors is given by the formula 𝐸𝐵 = 𝐸1 + 𝐸2 =
(

𝑄

2
)

2

2∙𝐶
+

(
𝑄

2
)

2

2∙𝐶
=

=
𝑄2

4∙𝐶
=

1

2
∙ 𝐸𝐴.  

So we can see that the total energy of the electric field has decreased to half after 

connecting an uncharged capacitor into the circuit. The question is what has happened 

to the other half of the energy? If we do not connect a resistor between a charged and 

an uncharged capacitor and simply connect them together by conductors, only few of us 

will think that the other half of the energy has changed into heat in these conductors. 

Actually, this is the correct answer, which can be proved with the help of the Joule-

Lenz’s law and higher mathematics (the point is to show that the heat released is 

independent on the resistance and is always equal to the half of the energy of the electric 

field in the capacitor). The proof is given in [3], for more detailed problem solution from 

the didactic point of view containing references to another relevant literature please see 

[4]. 

What is really important is how to experimentally demonstrate this paradox. As an 

interesting demonstration appears to be the connection of a charged and an uncharged 

capacitor through an object with low resistance, for example through a strip of an 

aluminum foil. Considering that the time constant of the transient response is directly 

proportional to the resistance (and therefore is very small), the current will be so huge 

to burn the aluminum strip, which obviously demonstrates the considerable amount of 

accumulated energy stored in the capacitor (for example, for the capacitance of 7.5 F 

and the voltage of 5 V, the energy is almost 100 J), and then the release of a substantial 

part of the energy into the conductor connecting the two capacitors, even if its resistance 

is very small. Demonstration can be done in many ways, for example, it is possible to 

‘draw’ by discharge using the outlets of a sharp conductor into the aluminium foil when 

discharging the capacitor, etc.  

Laboratory work – equilibrium of a circuit with a capacitor 

Let us present an idea for a particular laboratory work closely related to the paradox of 

two capacitors. Consider a circuit with a capacitor connected as shown in Figure 1 

below. The notation used in figure 1 will also be used in all the following computations. 

At the beginning, the capacitor is charged to the source voltage 𝑈0 and the current 

doesn’t flow through the circuit. At time 𝑡 = 0 s, the switch S is closed and the capacitor 

starts to discharge through the resistor 𝑅2. At the same time, however, the capacitor is 

still connected to the source of voltage, and therefore it doesn’t discharge completely 

and its voltage gets settled at the value 𝑈𝑢 after a certain time. It’s necessary to 

experimentally determine what this steady value of the capacitor voltage will be and for 

how long the transient response will last, and also compare the measured values with 

the theory.  
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Figure 1. A diagram of a circuit with a capacitor 

 
 

At steady-state, the capacitor voltage U must be the same as the voltage drop across the 

resistor 𝑅2, so the equation 𝑈𝑢 = 𝑅2 ∙ 𝑖2 must apply. At the same time, the voltage 

division between the source voltage and the capacitor voltage must be equal to the 

potentiometer voltage drop, so the equation 𝑈0 − 𝑈𝑢 = 𝑅1 ∙ 𝑖1 must apply.  

At steady-state, the current 𝑖1 equals to the current 𝑖2 (the capacitor is neither charging 

or discharging). So it applies:  

 

𝑈0 − 𝑈𝑢 = 𝑅1 ∙ 𝑖1 → 𝑈0 − 𝑈𝑢 =
𝑅1

𝑅2
∙ 𝑅2 ∙ 𝑖2 → 𝑈0 − 𝑈𝑢 =

𝑅1

𝑅2
∙ 𝑈𝑢 → 𝑈𝑢 =

𝑅2∙𝑈0

𝑅1+𝑅2
.   (1)  

 

It is more difficult to find the solution of the transient response, which is based on 

determining the dependence of the capacitor voltage on time u(t). After applying 

Kirchhoff's laws and the formula 𝑄 = 𝐶 ∙ 𝑈 and a few modifications, we obtain the 

differential equation for the unknown function u(t) with the initial condition u(0) = 𝑈0 

in the form: 

𝐶 ∙
𝑑𝑢

𝑑𝑡
+ 𝑢 ∙

𝑅1+𝑅2

𝑅1∙𝑅2
=

𝑈0

𝑅1
 .    (2) 

There we have a linear differential equation with the right-hand side, whose particular 

solution  𝑢𝑝 =
𝑅2∙𝑈0

𝑅1+𝑅2
 obviously corresponds to the steady-state of the circuit. After 

solving the homogeneous differential equation with regard to the initial condition, we 

obtain the time formula: 

𝑢(𝑡) =
𝑅1∙𝑈0

𝑅1+𝑅2
∙ 𝑒

−
𝑅1+𝑅2
𝑅1∙𝑅2∙𝐶

∙𝑡
+

𝑅2∙𝑈0

𝑅1+𝑅2
 .  (3) 

The first component corresponds to the transient response, while the second component 

corresponds to the steady-state of the circuit. The time duration of the transient response 

is given by the formula 

𝜏 =
𝑅1∙𝑅2∙𝐶

𝑅1+𝑅2
 , (4) 

indicating the time constant of the process. Therefore, it is obvious that the time 

duration extends with increasing capacitor capacity and is dependent on the resistor 

R1 

i1 S, t = 0 s 

V 
i2 

u, C R2 

U0 i 
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resistance and the potentiometer resistance. 

To perform the experimental task, we need a voltage source (flat battery), a capacitor of 

a large capacity (e.g. 1.5 F), a digital voltmeter, a resistor with a resistance in the order 

of ohms, a potentiometer or a decade resistance, a digital multimeter, a stopwatch, a 

switch and connecting conductors. We connect the circuit according to the Figure 1 and 

let the capacitor be charged through a potentiometer, for which we measure the 

resistance with a digital multimeter. During charging, we observe how the resistance 

changes of the potentiometer affect the charging speed of the capacitor, whose voltage 

is measured with a voltmeter. After the voltage value stabilizes, we try to disconnect the 

voltage source for a while and observe how fast the capacitor discharges if the appliance 

is not connected. We note the voltage drop within one minute and then recharge the 

capacitor to the maximum value by reconnecting it to the source. After that, we turn on 

the switch and the stopwatch and observe the voltage drop through the capacitor (the 

potentiometer is set to about 10 ohms). Regularly after about 10 seconds, we note the 

valid voltage value as the value stabilizes. We choose the stabilization criterion; it can 

be, for example, that the digital voltmeter reading does not change for at least 5 seconds. 

We write down (in addition to the resistance value set on the potentiometer) the steady 

voltage value and the transient response duration time. Then we turn off the switch, 

charge the capacitor to the maximum again and repeat the process for a different 

resistance value of potentiometer R1. This time, however, we no longer note consecutive 

voltage values, but only determine the time duration of the transient response and the 

resultant voltage. 

As a part of the data processing, pupils should find out how the time duration of the 

transient response depends on the potentiometer resistance R1. The data obtained can be 

plotted into a graph. Furthermore, pupils should be able to compare the theoretical and 

real course of a voltage drop across the capacitor and also compare the measured  

steady-state value with the theory, for example, according to the example given in the 

Graph 1 (values U = 4.5 V, R1 = 10 Ω, R2 = 5 Ω, C = 1.5 F).

 
 
 

 

             Graph 1. Transient response – The capacitor is partially discharging 

 

As a part of the protocol elaboration, the questions related to, for example, the  
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self-discharge of the capacitor, the limited allowable voltage and the causes of the 

differences between the theoretical and experimental course should be answered. It is 

obvious that pupils can hardly master the above mentioned derivation using a 

differential equation. However, they should understand the basic formulas leading to its 

compilation and also be able to analyze the above mentioned formulas (3) and (4).    

 

Conclusion 

The paper presents an introduction to the use of supercapacitors in upper secondary 

school physics instruction. It outlines some possibilities on how to use these interesting 

components in order to increase pupils’ motivation and improve their grasp of the 

capacitors function. It can be assumed that with the further development of this 

technique, it will become easier to purchase supercapacitors for schools in sufficient 

quantities and thus broaden the offer of laboratory works for pupils.  
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