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1. Introduction 

I will start with some arguments why topics of sports could/should be included in physics 
teaching at several school levels up to university. 

The first one is interdisciplinarity. I think there does not exist any curriculum all over the 
world, in which it is not stated that one should teach and work interdisciplinary. That one 
should try to combine at least two subjects on a certain topic. Physics and sports could be a 
good example. Also because a collaboration is sometimes obligatory, for instance when a 
physics lesson takes place in a swimming pool, since a physics teacher is not allowed to 
supervise such sports events.  

Motivation: If students are asked which school-subject they like most or not so much, sports 
is probably on one end, physics at the other. So why not take over some of the motivation 
for sports in the physics class. 

Activity: One of the most attractive features of sports is the activity. Young persons want to 
be active, to move, to run. The occasion to be active in a physics class is quite rare. The most 
activity is probably in connection with experiments. One can take a sports activity as an 
experiment with the own body performing measurements on it. 

Modelling: Modeling is important for all natural sciences. We always work with models. 
Students do not see this so clearly. Sports actions, in particular when the human body is 
involved, are very complex. In order to describe and explain them, one has to work with 
simplifications, with more or less sophisticated models. Working on such examples, students 
understand the necessity and the benefit of models. 

Multimedia: It is already in the hands of the students to make videos of sports events with 
their mobile phones. A mobile phone is also an experimental tool measuring for example 
accelerations. Apps are available showing graphical presentations of the measurements and 
even allowing an analysis of the data.  

In the following, I want to present different examples of the combination of sport and 
physics. In particular, I will cover three topics: High jump, what is the optimal angle for 
throwing, and records 
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2. High jump 

The question how the height of a jump is determined will lead to different answers – 
dependent on whom you are asking. A child will say: This is how high I am reaching with my 
hands. A physicist has the center of mass in his mind and thinks on the energy needed to 
raise this center of mass. And in sports, the athlete wants to jump over a bar. 

Let´s combine first child and physicist. This leads to a nice example to measure the force of 
legs even in a classroom.  

 

Fig. 2.1: Determination of the force of the legs by high jumping. (From L. Mathelitsch, S. 
Thaller, Sport und Physik, Aulis Verlag, Köln, 2008) 

A student with mass m stands towards a wall and makes a mark at the tips of the fingers 
(Fig. 2.1). Then he bends the knee, makes again a mark and jumps as high as possible to 
make another mark. Having these three numbers, in particular the two differences, the 
bending depth s and the jumping height h, the determination of the force of the legs is 
straightforward. The force FL is applied along the path s, and the energy goes in lifting the 
body from the lowest to the highest position, i.e. along the distance s+h. This gives the 
expression for the force of the legs: 

gm
s

hsFL ⋅⋅
+

=      (2.1)   

Performing this experiment, the students will see that it is not such easy, in particular the 
determination of the parameter s. How deep should one bend the knees? If it is not deep 
enough or too deep, the jump will be lower. Therefor the students have to find out the 
optimal bending position first. 
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Now let´s combine physics and sports. Fig. 2.2 show the historical development of different 
techniques of high jump. From a physics view, it is a decrease of the difference between the 
center of mass and the bar. This number is given in the last line of Fig. 2.2. One can see that 
it is even negative for the Fosbury Flop. How can this be? The center of mass can be outside 
of the body and by a coordinated movement of the upper and lower part of the body, the 
center of mass can move below the bar, while the body of the athlete never touches the bar.  

 

Fig 2.2: Different techniques of high-jump. The last line gives the distances between center 
of mass of the body and the bar. (From K. Willimczig, Biomechanik der Sportarten, Rowohlt, 
Hamburg, 1989) 

Now the question can arise whether there could be a more profitable technique with which 
this difference is even more negative. It would be with the belly down since this way of 
bending is much easier and the center of mass could be farer out of the body. Athletes do 
not apply this technique. For jumping high, it also needs speed achieved by the in-run. With 
the Fosbury Flop a smooth transition from running to jumping can be executed. This would 
be less efficient with the belly-down technique. Nevertheless, there is one sport where this 
technique is applied: pole vault. Here the run and the jump are disconnected and the athlete 
jumps belly-down. 

Now let´s consider a jump on the moon. How high does one jump on the moon? I will try to 
answer this question with three different models.  

Equal velocity means that the jump is done on the earth and on the moon with equal initial 
velocity v. Conservation of energy, or with other words, conversion of kinetic energy to 
potential energy 

hgmvm
⋅⋅=

⋅
2

²      (2.2)   

leads to the formula 

g
vh
⋅

=
2

² .     (2.3)   
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Knowing that the gravitational constant on earth is six times of that on the moon gives the 
result that one jumps on the moon six time as high as on earth. This result can be found in 
many physics text books. 

Equal Force. Why should the initial speed be the same? Let´s start with the assumption that 
the force of the legs does not change during the ride to the moon. Let FL be the force of the 
legs. Then the driving force F1 for the acceleration a is given by the equation 

1FgmFam =⋅−=⋅      (2.4)   

Assuming that FL = 2 m.g (one can carry a second person on the shoulders), the driving force 
is different on earth and on the moon 

gmFgmF MoonEarth ⋅⋅=⋅= 6
11

11     (2.5)   

This yields the result that the velocities before jumping off are different on earth and on 
moon: 

EarthMoon vv ⋅=
6

11
     (2.6)   

Inserting this relation in equation (2.3) gives a very different results: One jumps on the moon 
eleven time higher than on earth. So, which model is more correct? 

Dynamic model. One has to ask the experts, scientists who do dynamic modelling of the 
body. Important components of biological movement are muscles. Muscles do not work like 
a string or a rubber band. They do not obey a law similar to Hookes law, but a very different 
one: 

a
bv

cf −
+

=  .     (2.7)   

The force of a muscle f is inversely proportional to its speed v (a, b and c are constants, 
dependent on the muscle and on the individual person). The slower the muscle works, the 
more force the muscle can exert! Fig 2.3 shows the relation which is known as Hill curve. 
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Fig. 2.3: Relation of speed and force of a muscle, called Hill curve. (From L. Mathelitsch, S. 
Thaller, Sport und Physik, Aulis Verlag, Köln, 2008) 

Inserting formula (2.7) into the equation of motion, in addition with expressions for the 
activation of muscles and the geometry of the body gives the following final result: A jump 
on the moon should be 10,5 time as high as on earth. That means the second model was by 
far better.  

Why were the jumps of the few persons on the moon not such high? The astronauts were 
stuck in their space suits. They could barely move and bend their knees. And they were 
afraid of falling and damaging their space suits. 

3. Optimal Angle 

There are several sports disciplines where some pieces of sport equipment, like a ball or a 
discus, are thrown. Sometimes as far as possible, sometimes to hit a target. 

In order to throw a ball as far as possible, physicists know that one has to use an initial angle 
of 45 degrees. The range is given by the following formula, with v the initial speed and α the 
initial angle.  

)2sin(² α⋅=
g
vW      (3.1)   

In order to maximize W, α  has to be 45 degrees. Interestingly, this angle is not applied in 
any sports discipline. The following examples show that there are different reasons for this. 

American Football. In a kickoff or in the transition from offense to defense the ball is kicked 
as far as possible. But there is another requirement. The own team members run in the 
same direction and want to come as far as possible. This is dependent how long the ball is in 
the air. The corresponding time T is given by the expression: 
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αsin2
⋅

⋅
=

g
vT      (3.2)   

But T is maximal for an angle of 90 degrees, straight in the air. So, one has to find a 
compromise. The relation between T and W is not symmetric (Fig. 3.1). In the last part, there 
is a fast fall-off of the range with not too much increase in time. Therefor a compromise 
would be about 60 degrees and this is the angle with which the kickers try to shoot the ball. 

 

Fig. 3.1: Relation of range W and time T of a football kick. The numbers along the line 
indicate the angle of throwing. (From L. Mathelitsch, S. Thaller, Der Ball ist unrund, Physik in 
unserer Zeit 48/2, 2017, 78) 

The kick-off is done from the earth and the ball lands on the earth. Very often, the throw 
starts from a certain height H. Therefor we have to extend our expression for the range of a 
throw.  








 ⋅⋅
++⋅⋅=

²
2²sinsincos²

v
Hg

g
vW ααα   (3.3)   

The maximal range is given by 

²
21²

max v
Hg

g
vW ⋅⋅

+⋅=     (3.4)   

achieved by the optimal angle 

Hgv
Hg
⋅+

⋅
=

²
)cos( maxα .    (3.5)   

This relation is shown in figure (3.2). 
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Fig. 3.2: Relation of the initial angle α (horizontal axis) with the achieved range W with an 
initial height H of 2 m. The blue line corresponds to an initial velocity of v = 5 m/s, the red 
one to v = 10 m/s and the green one to v = 15 m/s. The black line connects the maximal 
ranges. (From S. Thaller, L. Mathelitsch, Steiler oder flacher, Physik in unserer Zeit 42/1, 
2011, 40) 

Closest to an optimal angle comes the discipline Hammer Throw. The hammer is thrown at 
an angle of 44 degrees, due to its high speed of 25 – 30 m/s.  

Shot-put has a lower speed of 14-15 m/s which would result in an optimal angle of 42 
degrees. But the geometry of the body forces an angle of around 35 degrees. The athletes 
have to make a compromise and the actual initial angles are between 38 and 42 degrees.  

Long Jump is throwing the own body. The speed of the athlete is fast, almost as fast as in a 
100 m sprint. What is the optimal angle? If we assume an initial speed of 9 m/s with an initial 
angle of 45 degree, the range would be 8,3 m. This is very realistic. But the maximal height of 
such a jump would be 2,1 m. This is close to a high jump, very unrealistic. What is wrong? To 
achieve an initial angle of 45 degree, the horizontal and the vertical velocities have to be 
equal. That means that the athlete would also need an initial speed of 9 m/s in the vertical 
direction, which is impossible. What is possible is a speed of 3 m/s, at the expense of the 
horizontal velocity which goes down to 8,5 m/s. This yields an initial angle of around 20 
degree. The height of the jump with about 1 m is realistic, but the range of 5,3 m is too low. 
How do the athletes manage to jump 8 meter? 

One important effect is the following: The jumpers raise their arms in the middle of the jump 
and they put them as low as possible at the end. These shifts the center of mass first higher 
in the body and then lower. But the trajectory of the jump refers to the center of mass. If the 
center of mass is lower in the body at the end, it implies that the body is higher with respect 
to the center of mass. Therefor the body lands quite a bit farther out. 
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Also with golf, experience shows an optimal angle of 20 degrees, but because of a very 
different reason. In golf, air resistance plays an important role. This is caused by turbulences 
behind the ball (Fig. 3.3 a). Interestingly, if the surface is not smooth, but has some dimples, 
then the area of these turbulences is smaller causing less air resistance (Fig. 3.3b). The 
reason are very small turbulences around these dimples, with the result that the air stream 
stays longer around the ball 

a)  

b)  

Fig. 3.3: a) Turbulences with a smooth ball. b) Less turbulences with a ball with dimples. 
(From L. Mathelitsch, S. Thaller, Tückisches Einlochen, Physik in unserer Zeit 40/5, 2009, 252) 

If the ball rotates, and it does it very fast, up to 3000 rotations per minute, this changes the 
direction of the ball (Fig. 3.4). The air stream behind the ball has, depending on the direction 
of the rotation, a direction to the ground or upwards. This behavior is called Magnus effect 
and it makes a slice ball flying longer, a top spin ball shorter. 

 

Fig. 3.4: Turbulences behind a spinning ball. (From L. Mathelitsch, S. Thaller, Tückisches 
Einlochen, Physik in unserer Zeit 40/5, 2009, 252) 

This effect has been investigated already in 1910 by J. J. Thompson. This scientist is well 
known to the physics-community, he is the “father” of the electron. In a discourse “The 
Dynamics of a Golf Ball” delivered to the Royal Institution, he stated the following: „It is the 
spin which accounts for the behaviour of a sliced ball.....a golf ball knowing only one rule...always 
following its nose.“  
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A ball with 60 m/s and at an initial angle of 45 degrees would fly more than 300 m without 
air resistance. With air resistance, the range would be about 150 m. Applying a slice of 60 
rotations per second results in a range of more than 200 m, with an initial angle of about 20 
degrees. 

Basketball. Research in physics education has shown that students have problems with 
diagrams. That means that we have to train them. In the following approach, students 
should transfer reality into a diagram. They should watch a video, in this case of a successful 
throw of a ball in a basket (Fig. 3.5, left).Then the students should draw what they have 
seen. They should draw an x-t diagram (horizontal movement versus time) and a y-t diagram 
(vertical movement versus time). Experience has shown that the y-t diagram is much easier 
for the students to complete than the x-t diagram (Fig. 3.5, right). 

 

Fig. 3.5: Left: Throw of a ball into a basket. Right top: Horizontal movement of the ball versus 
time. Right bottom: Vertical movement. 

As a second step, the velocity in these two directions can be drawn (Fig. 3.6). Out of 
experience, here the vertical diagram causes more problems.  

 

Fig. 3.6: Left: Horizontal speed of the ball of Fig. 3.5. Right: Vertical speed. 
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And finally the energies, kinetic and potential energy, of the ball can be drawn, as well as the 
sum of both (Fig. 3.7). As one can see, the ball looses energy more or less only during the 
contacts, at the basket and at the floor. 

 

Fig. 3.7: Potential energy of the ball (top), kinetic energy (middle), and sum of both (bottom). 

 

4. Records 

To break records is the final goal of many athletes, the own record, that of a country, and 
most valuable, the world record. There always will be world records. Even if all parameters 
stay the same, training, equipment, medicine, the attitudes of men and women are not the 
same, they are distributed, very often with a Gauß distribution. That means that there is 
always one at the edge with even more positive attitudes than others. And this person can 
achieve a new record. One just has to wait. Of course, it will become rarer and rarer. On the 
other hand, there will always be a development – in training, in equipment, in medical 
support. Therefor in many sport disciplines, one could see a steady improvement in the 
world records. In this regard, an interesting question arises, namely whether there is an 
ultimate limit. Of course, a person will never jump as high as 5 meter. But which height could 
be possible? 

I will illustrate this question with one example, 100 m sprint of men. Fig. 4.1 shows the 
development of the world record.  



11 
 

 

Fig. 4,1: World record of 100 m sprint men. The green and red lines are linear and logistic 
extrapolations. The dashed lines are estimations of the ultimate limit, see the text. (From L. 
Mathelitsch, S. Thaller, Physik des Sports, Wiley/VCH, Weinheim, 2015) 

If one asks about the ultimate limit, one can try an extrapolation. A linear one (green line in 
Fig. 4.1) does not make sense since it would end at a time of zero seconds. The red one 
seems more reasonable, it is an interpolation with a logistic equation. It flattens with a limit 
of 9,5 seconds (short dashed line). Mathematicians have indicated that world records are 
rare events. Therefor one has to apply a special statistics, like that for hurricanes or earth 
quakes. Within such a calculation, one ends with a limit of 9,3 s (long dashed line in Fig. 4.1). 

 

Fig. 4.2: Fig 4.1 with the inclusion of the world records of Ursain Bolt.  
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Fig. 4.1 did not take into account Ursain Bolt. Including his records, the graph looks different 
(Fig. 4.2). By now, several years are gone and no new record is in sight. That means the next 
point on the graph is already quite right and if there will be no new record within the next 
years, even further out. Then it could be some continuation of the blue dots, of the long-
lasting trend from before. And Ursain Bolt was some kind of accident.  
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